Selasa, 05 Juni 2018

Sponsored Links

Pythagorean Theorem and Proof | Perkins eLearning
src: www.perkinselearning.org

In mathematics, the collage theorem characterizes a recurrent functional system whose attractor is close, relative to Hausdorff's metric, to a given set. The IFS is described to consist of contraction images that, as collage or unity when mapping a given set, are arbitrarily close to the given set. This is usually used in fractal compression.


Video Collage theorem



Pernyataan teorema

di mana                         h          (         ?         ,         ?         )                  {\ displaystyle h (\ cdot, \ cdot)}    adalah metrik Hausdorff. Kemudian

                        h          (          L         ,          A         )          <=                                 ?                             1                -                s                                                   {\ displaystyle h (L, A) \ leq {\ frac {\ varepsilon} {1-s}}}   

dimana A adalah penarik IFS. Secara setara,

                   h        (        L        ,        A        )       <=        (        1        -        s                 )                       -            1                        h                  (                      L             ,                          ?                              n                 =                1                                            N                                                   w                              n                                       (            L             )                    )                             {\ displaystyle h (L, A) \ leq (1-s) ^ {- 1} h \ left (L, \ cup _ {n = 1 } ^ {N} w_ {n} (L) \ right) \ quad}  , untuk semua subkumpulan kecil tanpa aturan, L dari                             X                     {\ displaystyle \ mathbb {X}}   .

Secara informal, Jika                         L                  {\ displaystyle L}    hampir distabilkan oleh IFS, lalu                         L                  {\ displaystyle L}    juga hampir menjadi penarik IFS.

Maps Collage theorem



Lihat juga

  • Michael Barnsley
  • Barnsley pakis

Trigonometry Word Cloud Collage Education Concept Stock Vector ...
src: image.shutterstock.com


Referensi

  • Barnsley, Michael. (1988). Fraktal Dimana-mana . Academic Press, Inc. ISBN: 0-12-079062-9.

Pythagorean Theorem Stock Photos. Royalty Free Pythagorean Theorem ...
src: previews.123rf.com


Tautan eksternal

  • Deskripsi teorema kolase dan applet Java interaktif pada cut-the-knot.
  • Catatan tentang mendesain IFS untuk mendekati gambar sebenarnya.
  • Kertas Eksposisi tentang Fractals and Collage theorem


Source of the article : Wikipedia

Comments
0 Comments